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belongs to H, the prior probability pi of Hi (i = 1,2), and assuming that

Hi has the normal distribution N(i* ,V), i = 1,2, we derive the sequential

Bayesian solution of the discrimination problem when , -.fand V are

known. When 1, V are unknown and must be estimated, we propose a solution

which is asymptotic Bayesian with exponential convergence rate.

AMS 1980 Subject CZassifications: Primary 62C10, secondary 62L99.

Key words.and phrases: Bayesian decision, consistency, discrimination

analysis, exponential rate, sequential procedure.

Research sponsored by the Air Force Office of Scientific Research under
Grant AFSO-88-0030. The United States Government is authorized to
reproduce and distribute reprints for governmental purposes notwithstand-
ing any copyright notation hereon.



1. FORMULATION OF THE PROBLEM

Let H1 , H2 be two populations. We shall draw an individual a randomly

from ore of them. The problem is to select a population from which a is

most likely to come. The selection is based upon some measurements of

variates (physical, chemical, biological, etc.) taken on the individual a,

and the decision is reached sequentially in the following manner. First,

the variates are divided into k groups with a definite preference order.

At the start we can make a decision or take measurements x, of the first

group. We may choose to stop here and make a decision based on xl , or we

can go further and proceed to take measurements x2 belonging to the second

group. In general, after making observations on the first i groups and

recording the results x,, ... , xi, we may decide to terminate observation

and make a decision ( a belongs to H1 or H2), or we can go a step further

and proceed to observe the (i+l)-th group. Since there are only k groups

of measurements, a final decision must be made after k stages of observa-

tion. We suppose that the cost of observing the i-th group is a constant

Ci , i = l,...,k. These constants do not depend upon the results xI, .... xk

of observations on these k groups of measurements.

The motivation behind such a scheme is obvious: Usually we have some

prior knowledge concerning the importance of various variates in the dis-

crimination of an individual. The gain of reliability in discrimination

through observing more variates must be weighted with the cost we pay in

obtaining the measurements of these variates (see Wald (1947, 1950)).

Denote X1 i) = (X,...,Xi) i = l,...,k. Assume that under H., the

distribution of X(i) is normal N( j(i), V(i)) where
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v 11  V 12  ... VI

llV 21  V 22  V 2i

"j~i j =1,2; V

1/ V j1  V i2 V ii

Denote

W-VH - V VJ.1 )U I 1) i 2,3,... ,k; Wi V1

t + U V -1 (x - iji ,. kl 1,2.ji~x~i) Pj~i~l (i) (1)(i) j))

If a e Hr , the loss incurred by discriminating a into H sis z rs~ r,s 1,2.

We shall assume, that ~ 2 < 92l Pi < k 2 The prior probabilities of H-i

and H 2 are P11 P2, 0 < p1 < 1, p1 + p 2 = 1, respectively.

The problem is to find out the Bayes discrimination under the circum-

stances described above.

2. THE FORM OF BAYESIAN SOLUTION

In the sequel we use f(-,v,z) to denote the density function of N(vj).

As is well known, if X~k =X(k) has been observed, Bayesian discrimination

rule should be

f(x (k). "2(k)' V (k)) P(1  - 12)
f(x (k)' "1(k)' V(k)) P2£-22 - Z21 accept H1

f(x(k)' V2(k)' V(k)) >Pl(' 11 --'1l2)

f(x (k)' Pl(k)' V (k)) 2 z22- k21) accept H 2.

The rule can be written as: When
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(t2,kl]x(k f)) - tl,k..i(x(k-.1)))' W k IXk

2 2,k-('(kt k l-(X(kl1)) -tklxk -1klklx -1]

+ loglpl(' 11 --'12)/p2C 22-z21)]. (2)

We accept H1, otherwise we accept H 2.

Denote

_ W- 1u 1

i- (I )W t. x1 ) t (x )W1 t (x )

2 -2(~(i) - ji)) - (x~i -1(i) V ()

+ log1p1 (-el - -zl2)/P5 2 22-21]

Noticing that under X (kl1) = x(k 1)' the conditional distribution of X (k) is

N(t jk-l(x(k1) ), W k)' we see that the probability of fulfilling the inequality

(2) is m jk-l under Hi where

-j=0( D i tji~x( i)II, DWji1 D}.

Therefore, if we have already observed X (k-1) = x(k-1)' then under this con-

dition, the continuation of observing X(k) followed by a decision according to

the rule (1) gives a conditional risk

+ 9,12(l-m1 ,k-l)Plf(x(k-l)' " I(k-1) ' V(k-1))

+ z 22(l-'mk-l)P2f(x(k-l)' P2(k-l)' V (k-1))'

+ Cl1+ C2 +... +Ck' (3)
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On the other hand, if we make a decision without observing Xk, then the

posterior risk is

= lk-p A lf(X(kl), "l(k-k)' V(k-l))'ll

+ P2f(x(k-l)
' "2(k-l)' V(k-l))z21}

+ CI + C2 + ... + Ck- l  (4)

when we classify the individual a into Hl,

L2 = L2,k-1 Ak-l {Plf(X(k-l)' "1(k-1)' V(k-l))921

+ P2 f(x(k-l) ' "2(k-l)' V(k-l))z22}

+ C1 + C2 + ... + Ck-l (5)

when we classify a into H2* In (3)-(5), the definition of Ak-l is

Ai = p f(x(i) '  li )' V( i)) + p 2f(x(i) ' 
, 2(i)' V(i)). (6)

Denote by Li the minimum value of Ll, L2 and L3. If i0 = 1 or 2, we

classify the individual a into H1 or H2, respectively. Otherwise, we

go on observing Xk' and make the final decision according to (1).

Let Gk l(x(k l)) = min(L l, L2, L3). It is the minimum posterior risk

we can get based on having observed X(k-l) (stop here or continue to observe).

In general, for any i, we define Gi(x (i)) as the minimum posterior risk we

can get based on having observed x(i) (stop here or continue to observe).

In the following we define Gi(x(i)) by induction. Suppose that we have

already defined Gi(x(i)), i = k-l,k-2,...,k-., and X(kz-i) = X(k_9_l) has

been observed. If we stop observing and classify a into H1 or H2, then
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the posterior risk is

L l =Pl(X(k-t-1) ' 'l(k-x-l)' V(k-z-l)'l

+ P2f(x(k-t-l) ' "2(k-z-I)' V(k-t.)-))z21
}

+ CI + C2 + ... + C -k-1_

or

L 2 2,k - 1 {Plf(x(k-R-l) '  1(k- -l)' V(k- -l))12

+ P2f(x(k-x-l)
' 02(k-t-1)' V(k-z-l))z22}

+ ClI + C 2  + ... + C k -t l ,

respectively. If we go on observing Xk-9 ' then the minimum risk we can

get is Gkz(x(kz1) , Xk-). according to the definition of Gk_ (X(k_9)).

Hence in this case the minimum posterior risk is

L_3 L3kzl A k 1 {Plf(X(kzl), 0l(k-t-l)' V(k_ l))

E lGk9(k- ) x k-d)lX(k-z-l)) +

P2f(x(k-o.-l) "2(k-t-1)' V(k-k-l))

E 2(Gkz(X(k-2-1) , Xk-d)IX(k-t-1)))"

Summing up, we get

Gk- l(X(k-1-1 )) = min(L1 , L2 , L3 ).

In this way we complete the induction process of defining Gi(x )

i = l,...,k-1. Finally, we define

G = min(L1o, L20, L30 )

with L = Plll+ P2 '21, L20 
= P1 12 + P2 '22, L30 = EG1(X(i)).

Based upon the quantities just defined, we now introduce the following
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discrimination rule:

10. First, determine i such that Lio = G If i = 1 or 2, then

we do not make any observation and classify the individual into HI or H2,

respectively. Otherwise, proceed to 20.

20. Determine the following three sets:

A11  = {Xl: LII L L 21, LII , L31}

A21 =x 1: L11 > L21, L31 , L2 1}

A31 = {Xl: L11 > L31, L21 > L311

and observe X= x . If xI e Aj1 for j = 1,2, then we stop observation,

and classify the individual into H1 or H2, respectively. Otherwise, proceed

to 3o.

30. In general, if we have not made a final decision after observing

x(i) , then determine the following three sets:

A ,i+l = {Xi+l: L,i+l - L2,i+l , Lli+1 L 3,i+l}

A 2,i+l ={Xi+: L li+ l > L2,i+l L3 + 2+ l

A3,i+ l  = txi+l: Ll,i+l  > L3,i+l , L2 ,i+l > L3J+11

and observe X i+l = xi+l . If xi+l e Aj,i+ l for j = 1,2, then we stop obser-

vation and classify the individual into H1 or H2, respectively. Otherwise,

we return to the beginning of 30 with i changed to i + 1.

3. PROOF OF BAYESIAN PROPERTY OF THE RULE

Any sequential discrimination rule can be expressed in the form (T,6),

where T is "stopping time", i.e., T takes 0, 1, 2, ..., k as its value.

Either T = 0 and then 6 = H1 or 6 = H2, or T does not take the value 0. In
d.

this case for any i > 1, the set {x(k ) = T(x(k)) < i} has the form AixR
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where Ai is a Borel set in x(i) and di is the sum of dimensions of x

xks 6(x(T)) assumes the "values" HI or H2, and {x(T): 6(X(T)) = HI} is a

Borel set in space X(T). The Bayes risk of such a rule (T,6) is

T,) PlE ,(x(T)) + P2E202, (X(T)).

Denoting by (T*,6*) the discrimination rule given in Section 2, we

have the following theorem:

THEOREM I. For any (T,6), we have

B(T,6) > B(T*,6*). (7)

.rof. Obviously, B(T,5) > B(T*,6*) for any (T,6) when T* = 0. In the

following we assume that k > 1. It is trivial to verify that the conclusion

of the theorem is true when k = 1. For the general case, use the method of

induction. Suppose that the conclusion of Theorem 1 is true when k is re-

placed by k - 1. We have only to show that for any xI , the conditional risk

(denoted by R(T,61xl)) of discrimination (T,s) under the condition that

XI = x1 is observed, is always greater than or equal to the conditional risk

R(T*,6*I l) of discrimination (T*,6*). Three cases are in order:

1. According to (T,u), we should go on observing X2.

Since (after having ovserved Xl) there are at most k - 1 groups of

measurements that may be observed, according to the induction assumption

that the theorem holds for k - 1 groups of observations, if we continue to

take observations according to the rule of (T*,6*) after having gotten

Xl = x, then the Bayes risk (which is L31 under the previous notations) we

get would not be greater than R(T,6)x 1 ). But if we use the rule (T*,6*),

then, after having observed Xl = x, the minimum posterior risk we can get

is G l(X()) min(L, L21, L3 1). Therefore
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R(T*,6*IxI) 1 R(T,61xI). (8)

2". According to (T,), after having observes X1 = x1, we classify a in-

to H1.

Now R(T, Ix1 ) = LII. But according to (T*,6*), we have

R(T*,6*1lx) = G1(x(l)) < LII.

So (8) is still true.

3o. According to (T,,S), after having observed X1 =x we classify

a into H2.

This case is similar to 2' .

Therefore, we have shown that (8) is always true, and the theorem is

proved.

4. DETAILED COMPUTATION PROCEDURE FOR THE CASE OF k = 2

When k < 2, there are no computation difficulties in the application of

the method. When k > 2, L3i with i < k - 2 is not easy to compute, and the

application of the method is quite involved.

A very important case in practice is k = 2. For the case, we detail

the compution procedure as follows:

1 Compute W2 =V - V2 1V1 V2

2 '. Denote by xI the observation of the first group. Calculate

tj(Xl) = j2 + V21 V (xl-Ujl)' J = 1,2.

30. Compute

D = W 1 + Vz1V_( -
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q .1{t,(xl)W It2(xl ) - tl(Xl)W -Itl(xl)

+ (x1 - -21 'V 1  )- ( x -i1 )V(x 1 - 1 }

+ log[pl(' 12 -'ll)/p 2 ( 21 -k22)].

40. Compute mj ((q--D)- = 1,2.

50. Compute A plf(xls Pll' Vll) + P2f(xl ' H2 1 ' Vll), and

L = A-1 (plf(xl' Hll Vll)dZl + P2f(x1, 2 1 $ V11 ) 2 1 ) + Cl

L2  = A 
1 (plf(xl, ll' Vll) 12  + P2f(xl

'  "21' Vll)' 22 ) + Cl

L3 = {klmlPlf(xl' 1 9 V11) 
+ z21m2P2f(xl

' J21, V11 )

+ 12(l -m1 )p
lf(xl' ll' Vll) + 22(l-m 2)p2f(x

l'  21' V1l)

+ Cl + C2.

60. Find out the smallest i0 such that Li = min(L l , L 2, L3).

If i0 = 1 or 2, then we classify the individual into H1 or H2. If i0 = 3,

then we go on observing X2.

70. Compute D'x2. If D'x2 < q (D and q have been computed in 30), we

classify a into H1. Otherwise, we classify a into H2.

5. THE CASE WHEN PARAMETERS ARE UNKNOWN

In the discussion above, we have assumed that pI, P2 1 H1, u2 and V are

all known. In practice, such parameters are usually unknown or partially

unknown. In such cases we must assume that some training samples Y(n) are

available to make some estimation on the unknown parameters, which will be

denoted by P P ln I 2n and V. Then we use these estimates to replace

P1' P2 ' 11' H2 and V in the above-defined algorithm. In this way we get a
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rule of discrimination which will be denoted by (T n, 6n), whose Bayesian

risk is

B(T n R) = E(B T R(Y())' 6n(Y(n)))IY(n)) ,

where B(Tn(Y (n)' 5 (Y (n))) is to be understood as the Bayesian risk of the

discrimination rule obtained by the above scheme, on condition that the

training sample is fixed as Y (n) Since for any Y(n) it is true that

B(T n(Y (n) ), 6 n(Y (n) )) > B(T*,6*),

we shall always have

B(Tn,an) >(*6)

Now we proceed to prove the following theorem.

THEOREM 2. If Pln' P2n' 1 ln' '2n and Vn are constant estimates of

Pl' P l' p2 and V, respectively, then lim B(Tn, n) = B(T*,6*).2% w12 w2n- n

The proof of the theorem is based on the following lemma.

LEMMA 1. Denote by (T n, n) the discrimination rule obtained by substi-

tuting qln' q2n' "ln' v2n and ,n for Pl' P2 ' 0l' 12 and V in the definition

of (T*,6*) in Section 2. Then we have

B(T , n) B(T,6) (9)

if

q ln , P' q2n P2' Vln "l' v2n "2 and zn - V. (10)

Proof. We shall use G0 (n), Gi(x(i),n), Lji(n) to denote the quantities

corresponding to Go , Gi(x(i)), Lji in defining (T , n) by replacing p I, etc.,

by qIn' etc.

Since it is obvious that
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B(T*,6*) = EGo,

B(Tn n) = EGo(n).

Therefore, on noticing the uniform boundedness of Go and G0 (n) (not exceed-

ing max(2ij) , we see that in order to prove the lemma we need only to prove

rli Ljo(n) = LjO, j = 1,2,3. (11)

Since L1o(n) = qln'll I q2n+21
, L20 (n) = qn +12 I q2n'22 and qIn - Pl

and q -2n P2 9 we see that (11) is true for j 1,2.

In order to prove (11) for j = 3, we use induction. First suppose that

k = 1. According to the definition, we have

L30 = Plmll + P2m2' 21 + Pl(l -mI )z12 + P2( -m2)z 22. (12)

L30(n) = qlnmln'll + qr2nm2n'21 + qln( -mln)'12 + q2n(l-m 2n)'22 , (13)

where m 1  P( < Okl,V), m2 = P(C - OIV2,V),

rn < <O1" E ). mn = P( < 0V E)min :P( n O l ln ' n )  m2n : (n - O2n9 n)

' -1 1 '-1 1 ' 1 PI(QII- Z12)

X1V ( 2 - 1 ) + 2v"2  12 - ,lV P - log 21)

and E 1 ' - 1 '- - log 21(z 1 2)

1 n ('2n-vn) + 2V2n n 2n - 2'1nn In q2n 22

It is clear that when (10) is true, the distribution of En under ( -in,'n) con-

verges to the distribution of & under (pi,V), i = 1,2, which entails

mln ' Ml, m2n - m2  when n -.

According to (12) and (13), we have L30(n) - L30 and the case k = 1 is proved.

Now we assume that the conclusion of the lemma is true for k - 1.
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Express L30 and L30 (n) as

L30= E min(L i , L2 1, L31(X)),

L30 (n) = E min(L11 (n), L21(n), L31(n,Xl)).

Based on the expressions of Lll, L21 given in Section 2, we get

Ll(n) - Lill j = 1,2. (14)

Also, considering the expressions of L31(X) and L31(n,Xl), in order to prove

that (14) is true for j = 3, we need only show that when (10) is true,

E(G 2(X (2) n)Il) -' E(G 2(X (2))IXl) (15)

for fixed XI. For this purpose, we note that to calculate the values of both

sides of (15), on condition that X is observed, it is the same as calculating

EGI(X( 1),n) and EGI(X(1)) in the original problem with k reduced to k - 1.

Therefore the truth of (15) for any fixed X1 follows directly from the induction

hypothesis. From this, and the fact that G2(X(2),n) is uniformly bounded, it

follows by the dominated convergence theorem that L30 (n) - L30 for k. Thus

we prove (i) and hence the lemma.

Now back to the proof of the theorem. By Lemma 1, for any > 0, we can

take n > 0 small enough such that

n-Pj< n, jn-j < n, j = 1,2, lIVn < I, (16)

imply

IB(Tn(Y(n)), 'n (Y(n))) - B(T*,6*)I < E.

By consistency we know that when n is large enough, the probability that the

inequalities in (16) are true simultaneously is not less than 1 - £. Also,
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noticing that B(Tn(Y(n)), n (Y (n))) .M = max(zll, k12' Z21' 22' we get

JB(T n6 n ) - B(T*,6*)l < E + ME

for n large enough. This concludes the proof of the theorem.
uayYl( 1),Y n. are

Usually Y(n) = (Yi' , Y 21'"" ) where Yil .... Yin i

i.i.d., Yi N(i,,V) under H., i = 1,2. In this case we use

I n i

"in n I Yi i = 1,2;:n i j l iJ

2 ni1 + (i I (Yij - in) (Yij - in)'
Vn - nn : 1 j=l

to estimate Il, W2 and V. Also we use P = ni/n to estimate P, i = 1,2,

where we assume that nI - B(n,pl), n1 + n2 = n, 0 < p1 < 1.

THEOREM 3. Under the conditions above, B(Tn(Y(n)), 6n(Y (n))) converges

to B(T*,6*) in exponential rate, i.e., for any E > 0, there exists a constant

C > 0 depending upon e but not upon n, such that

PKIBkTR(Y(R))) - B(T*,6*) > E= O(e-Cn (17)

Proof. The proof runs largely along the line as in Theorem 1, with the

help of the following known result (see Petrov (1975)).

LEMMA 2. Let X, X2, ... be an i.i.d. sequence of random variables,

EXl = 0, and there exists 6 > 0 such that

txl
E(e ) , for t < 6.

Then for any E > 0 there exists a constant C depending upon E but not upon n,

such that
P(1(nj > F-) = O(e- Cn),
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in

where Xn= k Xi

Turning to the proof of the theorem, we note that the random variables

E N(O,2 2,2 and &- P defined by

P(E2 1) = 1 - P(E2 = O) =Pl

all satisfy the condition of Lemma 2. From this it is easily seen that for

any given n > 0 we have

P(IPin -Pil > n) - O(e Cn), i = 1,2 (18)

P( lLin - il > n) = O(e-Cn), i = 1,2 (19)

P(IIV n - VII > 9) = O(eCn). (20)

Now given arbitrarily c > 0, according to Lemma 1, there exists Y, > 0 such

that

{Iin(y - pi I< n' (Y (n))  - il < n, i = 1,2; lVn(Y(n))-VII n}

-- iB(Tn(Y(n)), 6n(Y(n)) - B(T*,6*)I <E.

From this and (18)-(20), we get

P(IB(Tn(Y(n)) '  n(Y(n))) - B(T*,6*)I > E)

2 2

S I in n PP(Pin-PI T) + Z P(. in-1 > n) + P(IVn -VII > )

O(e- Cn),

and the proof is concluded.

ACKNOWLEDGMENT

The author is deeply grateful to Professor C.R. Rao for his valuable

guidance and suggestions.



15

REFERENCES

[1] PETROV, V.V. (1975). Sums of Independent Random Variables. Springer-

Verlag, Berlin.

[2] WALD, A. (1947). Sequential Analysis. J. Wiley & Sons, New York.

[3] WALD, A. (1950). Statistical Decision Functions. J. Wiley & Sons,
New York.


